

CONCRETE CANVAS® Concrete on a Roll

CHEMICAL RESISTANCE

CHEMICAL RESISTANCE

Chemical Resistance

Based on testing to BS EN 14414:2004 "Geosynthetics. Screening test method for determining chemical resistance for landfill applications".

Concrete Canvas® GCCM* (CC) products have been independently tested by BICS Laboratories Ltd, UK to assess the performance of CC5™, CC8™ and CC13™ when immersed for 56 days in a range of chemicals at 50°C. The test method used is based on BS EN 14414:2004, "Geosynthetics. Screening test method for determining chemical resistance for landfill applications".

The test method involves full immersion of sample bars (40x160mm) in the test chemical over a period of 56 days at an elevated temperature of 50°C to accelerate any signs of deterioration. Following the 56 day immersion period, the samples are subjected to a 3-point bend test and the flexural strength results compared to a set of control specimens. Five samples of all 3 CC formats (CC5™, CC8™, CC13™) were tested against the following chemicals:

- Acid (pH 1.0)
- Alkaline (pH 13.0)
- Hydrocarbon (35% diesel, 35% paraffin & 30% lubricating oil)

Summary of Results

		CC5™	CC8™	CC13™
Acid	Mean Strength (MPa)	6.07	4.45	5.57
Aciu	Retained Strength (%)	107%	115%	111%
Alkaline	Mean Strength (MPa)	6.92	3.84	4.62
Aikaime	Retained Strength (%)	121%	99%	92%
Llydroorbon	Mean Strength (MPa)	9.93	5.86	8.31
Hydrocarbon	Retained Strength (%)	115%	99%	103%

CC products showed minimal or no loss of flexural strength following chemical immersion.

The results listed here should be used for indicative purposes only. Please contact Concrete Canvas Ltd with the specific nature of your application detailing the chemical composition and the environmental conditions under which the material will be used, in order that we can provide more information on the suitability of CC.

*Geosynthetic Cementitious Composite Mat

Reliable testing, Superior service

T +44 (0) 1484 717776 F +44 (0) 1484 717757 E info@bics-labs.co.uk W www.bics-labs.co.uk

TEST REPORT

REPORT REFERENCE: BS-J861/a

Report Date 28/07/2014

Client Concrete Canvas Ltd, Pontypridd, CF37 5SP

Contact William Crawford

Contract Reference N/A
Client PO/Ref No TBA

Material Tested 5mm & 13mm Concrete Canvas

Date Received 23/05/2014

Sample IDs CC5

Tests Requested Chemical Resistance - BS EN 14414:2004

If you have any questions or require additional information, please do not hesitate to contact us.

Report Authorisation:

Clifford Butt Managing Director 31/07/2014

Cert No. 7495 ISO 9001

Unit 2, Little John Mill, Oak Hill Road, Brighouse, West Yorkshire HD6 1SN T +44 (0) 1484 717776 F +44 (0) 1484 717757 E info@bics-labs.co.uk W www.bics-labs.co.uk

TEST RESULTS CONCRETE CANVAS LTD P.O NO: TBA

Contract Ref: N/A Report Ref No: BS-J861/a
Material: 5mm Concrete Canvas CC5 Dates Tested: 23/05-25/07/2014

Test Methods: BS EN 14414:2004 - Chemical Resistance &

Concrete Canvas Test Procedure 01 - Bending Strength

Parameter							MEAN	Std Dev
Sample ID: Control	Sampla ((^ootod	Edgas	ı				
-	Sample (C	Jualen	Euges	•				
Test Conditions: None								
Specimen ID	21	38	42	29	13			
Ave. Width mm	39.96	39.52	39.54	39.96	39.45		39.69	0.25
Ave. Thickness mm	4.84	4.85	4.93	4.83	4.80		4.85	0.05
Load at First Crack N	32.2	44.1	31.3	37.9	31.5		35.4	5.6
Bending Strength MPa	5.16	7.11	4.89	6.11	5.20		5.69	0.91
Sample ID: Acid Exp	posed Sar	nple {C	oated I	Edges}		BICS Sample Ref: 01		
Test Conditions: Method A,	, hydrolysis ui	nder acidi	c conditio	ns, start p	H 1.0, 50°C for 56	6 days		
Specimen ID	3	17	19	18	12			
Ave. Width mm	41.80	41.62	40.56	40.28	38.83		40.62	1.19
Ave. Thickness mm	5.13	4.94	5.13	5.24	5.48		5.18	0.19
Load at First Crack N	40.6	46.2	38.4	44.1	51.5		44.2	5.1
Bending Strength MPa	5.53	6.81	5.38	5.99	6.64		6.07	0.64
						Retained Strength %	1/	07
Sample ID: Basic Ex	vnosad Si	amnla s	Coated	Edges'	ι	BICS Sample Ref: 02		
Test Conditions: Method B,	-			•	-	•		
Specimen ID	46	44	48	41	23			
Ave. Width mm	40.16	39.70	39.46	39.71	39.70		39.75	0.26
Ave. Thickness mm	4.95	4.90	4.85	4.79	4.86		4.87	0.06
				40.0				2.5
Load at First Crack N	40.5	44.6	47.1	42.8	42.1		43.4	2.0
Load at First Crack N		44.6 7.02	47.1 7.62	42.8 7.06	42.1 6.73		43.4 6.92	0.53
	40.5					Retained Strength %	6.92	
Load at First Crack N	40.5					Retained Strength %	6.92	0.53
Load at First Crack N	40.5					Retained Strength %	6.92	0.53
Load at First Crack N	40.5					Retained Strength %	6.92	0.53
Load at First Crack N	40.5					Retained Strength %	6.92	0.53
Load at First Crack N	40.5					Retained Strength %	6.92	0.53
Load at First Crack N	40.5					Retained Strength %	6.92	0.53
Load at First Crack N	40.5					Retained Strength %	6.92	0.53
Load at First Crack N	40.5					Retained Strength %	6.92	0.53
Load at First Crack N	40.5					Retained Strength %	6.92	0.53
Load at First Crack N	40.5					Retained Strength %	6.92	0.53

Reliable testing, Superior service

T +44 (0) 1484 717776 F +44 (0) 1484 717757 E info@bics-labs.co.uk W www.bics-labs.co.uk

TEST REPORT

REPORT REFERENCE: BS-K221/a

Report Date 11/11/2014

Client Concrete Canvas Ltd, Pontypridd, CF37 5SP

Contact Marcin Kujawski

Contract Reference N/A
Client PO/Ref No TBA

Material Tested 8mm & 13mm Concrete Canvas

 Date Received
 12/09/2014

 Sample IDs
 CC8 & CC13

Tests Requested Chemical Resistance - BS EN 14414:2004

If you have any questions or require additional information, please do not hesitate to contact us.

Report Authorisation:

Ryan Hackney Laboratory Manager 11/11/2014

Cert No. 7495 ISO 9001

Page 1 of 3

Unit 2, Little John Mill, Oak Hill Road, Brighouse, West Yorkshire HD6 1SN T +44 (0) 1484 717776 F +44 (0) 1484 717757 E info@bics-labs.co.uk W www.bics-labs.co.uk

TEST RESULTS CONCRETE CANVAS LTD P.O NO: TBA

Contract Ref: N/A Report Ref No: BS-K221/a
Material: 8mm Concrete Canvas CC8 Dates Tested: 12/09-11/11/2014

Test Methods: BS EN 14414:2004 - Chemical Resistance &

Concrete Canvas Test Procedure 01 - Bending Strength

8.69 71.2 3.54 nple {Co <i>ider acidic o</i> 24 40.66 9.05	7 40.11 8.43 79.8 4.20	11 40.09 8.64 84.5 4.23 Edges} ns, start p 5 40.83 8.71 99.5	18 40.30 8.89 84.1 3.96 H 1.0, 50° C for 56 20 40.70 8.89 86.3	BICS Sample Ref: 01 BICS Sample Ref: 03 days	40.05 8.65 77.4 3.88	0.20 0.17 7.7 0.37
40.00 8.69 71.2 3.54 nple {Co <i>der acidic o</i> 24 40.66 9.05 85.8	40.11 8.43 79.8 4.20 Dated E condition 14 40.93 8.98 109.5	40.09 8.64 84.5 4.23 Edges} ns, start p 5 40.83 8.71 99.5	40.30 8.89 84.1 3.96 H 1.0, 50° C for 56 20 40.70 8.89 86.3	•	8.65 77.4 3.88	0.17 7.7 0.37
40.00 8.69 71.2 3.54 nple {Co <i>der acidic o</i> 24 40.66 9.05 85.8	8.43 79.8 4.20 Dated E condition 14 40.93 8.98 109.5	8.64 84.5 4.23 Edges} ns, start p 5 40.83 8.71 99.5	40.30 8.89 84.1 3.96 H 1.0, 50° C for 56 20 40.70 8.89 86.3	•	8.65 77.4 3.88	0.17 7.7 0.37
8.69 71.2 3.54 nple {Co <i>ider acidic o</i> 40.66 9.05 85.8	8.43 79.8 4.20 Dated E condition 14 40.93 8.98 109.5	84.5 4.23 Edges} ns, start p 5 40.83 8.71 99.5	84.1 3.96 H 1.0, 50° C for 56 20 40.70 8.89 86.3	•	77.4 3.88 40.74	7.7 0.37
3.54 nple {Conder acidic of the second of t	4.20 Dated E condition 14 40.93 8.98 109.5	4.23 Edges} ns, start p 5 40.83 8.71 99.5	3.96 H 1.0, 50° C for 56 20 40.70 8.89 86.3	•	3.88	0.3
nple {Co ader acidic of 24 40.66 9.05 85.8	condition 14 40.93 8.98 109.5	Edges} ns, start p 5 40.83 8.71 99.5	H 1.0, 50° C for 56 20 40.70 8.89 86.3	•	40.74	
24 40.66 9.05 85.8	14 40.93 8.98 109.5	ns, start p 5 40.83 8.71 99.5	20 40.70 8.89 86.3	•		
24 40.66 9.05 85.8	14 40.93 8.98 109.5	5 40.83 8.71 99.5	20 40.70 8.89 86.3	days		
40.66 9.05 85.8	40.93 8.98 109.5	40.83 8.71 99.5	40.70 8.89 86.3			
9.05 85.8	8.98 109.5	8.71 99.5	8.89 86.3			
85.8	109.5	99.5	86.3		0.04	0.13
					8.94	0.1
3.86	4.97				96.6	10.
		4.82	4.02		4.45	0.49
				Retained Strength %	11	5
mple {C	oated	Edges	}	BICS Sample Ref: 04		
•			=	days		
21	23	15	17			
40.16	40.12	40.22	40.32		40.31	0.24
9.14	9.04	9.14	9.13		9.05	0.1
82.5	100.7	65.6	76.0		84.3	14.
3.69	4.61	2.93	3.39		3.84	0.7
				Retained Strength %	9	9
	21 40.16 9.14 82.5	21 23 40.16 40.12 9.14 9.04 82.5 100.7	21 23 15 40.16 40.12 40.22 9.14 9.04 9.14 82.5 100.7 65.6	21 23 15 17 40.16 40.12 40.22 40.32 9.14 9.04 9.14 9.13 82.5 100.7 65.6 76.0	40.16 40.12 40.22 40.32 9.14 9.04 9.14 9.13 82.5 100.7 65.6 76.0 3.69 4.61 2.93 3.39	21 23 15 17 40.16 40.12 40.22 40.32 40.31 9.14 9.04 9.14 9.13 9.05 82.5 100.7 65.6 76.0 84.3 3.69 4.61 2.93 3.39 3.84

BICS Laboratories Ltd. neither accepts responsibility for nor makes claim as to the final use and purpose of the material.

Unless otherwise detailed sample sizes and related test items comply with the listed test method. Test results relate only to the sample(s) supplied.

The company also observes and maintains client confidentiality.

CONFIDENTIAL TEST REPORT

Unit 2, Little John Mill, Oak Hill Road, Brighouse, West Yorkshire HD6 1SN T +44 (0) 1484 717776 F +44 (0) 1484 717757 E info@bics-labs.co.uk W www.bics-labs.co.uk

Report Ref No: BS-K221/a

Dates Tested: 12/09-11/11/2014

TEST RESULTS CONCRETE CANVAS LTD P.O NO: TBA

Contract Ref: N/A Material: 13mm Concrete Canvas CC13

Test Methods: BS EN 14414:2004 - Chemical Resistance &

Concrete Canvas Test Procedure 01 - Bending Strength

10 40.45 12.79 193.9 4.40	8 40.64 12.60	4 40.45 12.91 248.5 5.53	17 40.52 12.55 221.0 5.19 H 1.0, 50° C for 56 23 40.90	BICS Sample Ref: 02 BICS Sample Ref: 05 days	40.50 12.78 220.9 5.01	0.19 0.14 19.5 0.42
40.45 12.79 193.9 4.40 nple {C ider acidio 3 40.45 12.89 289.1	40.28 12.79 224.5 5.11 oated E c condition 8 40.64 12.60	40.45 12.91 248.5 5.53 Edges} ns, start p 11 40.75	40.52 12.55 221.0 5.19 H 1.0, 50° C for 56 23 40.90	BICS Sample Ref: 05	12.78 220.9	0.14 19.5
40.45 12.79 193.9 4.40 nple {C ider acidio 3 40.45 12.89 289.1	40.28 12.79 224.5 5.11 oated E c condition 8 40.64 12.60	40.45 12.91 248.5 5.53 Edges} ns, start p 11 40.75	40.52 12.55 221.0 5.19 H 1.0, 50° C for 56 23 40.90	•	12.78 220.9	0.14 19.5
12.79 193.9 4.40 nple {C der acidio 3 40.45 12.89 289.1	12.79 224.5 5.11 coated E c condition 8 40.64 12.60	12.91 248.5 5.53 Edges} ns, start p 11 40.75	12.55 221.0 5.19 H 1.0, 50° C for 56 23 40.90	•	12.78 220.9	0.14 19.
193.9 4.40 nple {C ader acidio 3 40.45 12.89 289.1	224.5 5.11 c condition 8 40.64 12.60	248.5 5.53 Edges} ns, start p 11 40.75	221.0 5.19 H 1.0, 50° C for 56 23 40.90	•	220.9	19.
4.40 nple {C	5.11 oated E c condition 8 40.64 12.60	5.53 Edges} ns, start p 11 40.75	5.19 H 1.0, 50° C for 56 23 40.90	•		
nple {C ader acidio 3 40.45 12.89 289.1	oated E c condition 8 40.64 12.60	Edges} ns, start p 11 40.75	H 1.0, 50° C for 56 23 40.90	•	5.01	0.4
3 40.45 12.89 289.1	8 40.64 12.60	ns, start p 11 40.75	23 40.90	•		
3 40.45 12.89 289.1	8 40.64 12.60	11 40.75	23 40.90	days		
40.45 12.89 289.1	40.64 12.60	40.75	40.90			
12.89 289.1	12.60					
289.1		12.66			40.59	0.20
	040.0	12.00	12.28		12.44	0.4
6.45	212.0	258.7	224.7		234.3	40.
	4.93	5.94	5.46		5.57	0.6
				Retained Strength %	11	1
mple {(Coated	Edaes	}	BICS Sample Ref: 06		
			=	-		
1	7	14	9			
40.73	40.28	40.52	40.12		40.45	0.2
12.74	12.72	12.75	12.78		12.72	0.0
204.5	195.7	207.1	218.7		201.8	13.
4.64	4.50	4.72	5.01		4.62	0.28
				Retained Strength %	9:	2
	1 40.73 12.74 204.5	der basic condition 1 7 40.73 40.28 12.74 12.72 204.5 195.7	der basic conditions, start pl 1 7 14 40.73 40.28 40.52 12.74 12.72 12.75 204.5 195.7 207.1	1 7 14 9 40.73 40.28 40.52 40.12 12.74 12.72 12.75 12.78 204.5 195.7 207.1 218.7	der basic conditions, start pH 13.0, 50° C for 56 days 1 7 14 9 40.73 40.28 40.52 40.12 12.74 12.72 12.75 12.78 204.5 195.7 207.1 218.7 4.64 4.50 4.72 5.01	der basic conditions, start pH 13.0, 50° C for 56 days 1 7 14 9 40.73 40.28 40.52 40.12 40.45 12.74 12.72 12.75 12.78 12.72 204.5 195.7 207.1 218.7 201.8 4.64 4.50 4.72 5.01 4.62

BICS Laboratories Ltd. neither accepts responsibility for nor makes claim as to the final use and purpose of the material. Unless otherwise detailed sample sizes and related test items comply with the listed test method. Test results relate only to the sample(s) supplied. The company also observes and maintains client confidentiality.

CONFIDENTIAL TEST REPORT

Reliable testing, Superior service

T +44 (0) 1484 717776 F +44 (0) 1484 717757 E info@bics-labs.co.uk W www.bics-labs.co.uk

TEST REPORT

REPORT REFERENCE: BS-J444/d

Report Date 21/10/2013

Client Concrete Canvas Ltd, Pontypridd CF37 5SP

Contact William Crawford

Contract Reference N/A
Client PO/Ref No TBA

Material Tested 5mm, 8mm & 13mm Concrete Canvas

Date Received 01/08/2013

Sample IDs See Test Report

Tests Requested Chemical Resistance - BS EN 14414:2004

If you have any questions or require additional information, please do not hesitate to contact us.

Report Authorisation:

Ryan Hackney Laboratory Manager 21/10/2013

Cert No. 7495 ISO 9001

Page 1 of 4

Unit 2, Little John Mill, Oak Hill Road, Brighouse, West Yorkshire HD6 1SN T +44 (0) 1484 717776 F +44 (0) 1484 717757 E info@bics-labs.co.uk W www.bics-labs.co.uk

TEST RESULTS CONCRETE CANVAS LTD P.O NO: TBA

Contract Ref: N/A Report Ref No: BS-J444/d Material: 5mm Concrete Canvas CC5 Dates Tested: 01/08-01/10/2013

Test Methods: BS EN 14414:2004 - Chemical Resistance &

Concrete Canvas Test Procedure 01 - Bending Strength

Parameter							MEAN	Std De
Sample ID: Control	Sample					BICS Sample Ref: 07		
Test Conditions: None								
Specimen ID	11	12	13	14	15			
Ave. Width mm	40.60	40.23	40.30	40.04	40.40		40.31	0.21
Ave. Thickness mm	4.97	4.89	4.96	4.97	4.99		4.96	0.04
Load at First Crack N	60	54	59	52	60		57	4
Bending Strength MPa	8.97	8.42	8.93	7.89	8.95		8.63	0.48
Sample ID: Solvatio Test Conditions: Method C,	•		% diesel,	35% para	ffin & 30% lub	BICS Sample Ref: 16 ricating oil), 50° C for 56 days		
Specimen ID	16	17	18	19	20			
Ave. Width mm	40.46	40.59	40.59	40.45	40.64		40.55	0.09
Ave. Thickness mm	4.84	5.00	4.84	4.86	4.90		4.89	0.07
Load at First Crack N	72	55	65	64	64		64	6
Bending Strength MPa	11.39	8.13	10.25	10.05	9.84		9.93	1.17
						Retained Strength %	1	15

Unit 2, Little John Mill, Oak Hill Road, Brighouse, West Yorkshire HD6 1SN T +44 (0) 1484 717776 F +44 (0) 1484 717757 E info@bics-labs.co.uk W www.bics-labs.co.uk

TEST RESULTS CONCRETE CANVAS LTD P.O NO: TBA

Contract Ref: N/A Report Ref No: BS-J444/d Material: 8mm Concrete Canvas CC8 Dates Tested: 01/08-01/10/2013

Test Methods: BS EN 14414:2004 - Chemical Resistance &

Concrete Canvas Test Procedure 01 - Bending Strength

Sample ID: Control	Sample					BICS Sample Ref: 08		
Test Conditions: None								
Specimen ID	31	32	33	34	35			
Ave. Width mm	39.51	39.65	39.98	39.85	40.02		39.80	0.22
Ave. Thickness mm	8.25	8.54	8.26	8.47	8.27		8.36	0.14
Load at First Crack N	109	109	111	110	111		110	1
Bending Strength MPa	6.08	5.65	6.10	5.77	6.08		5.94	0.21
	0.00							
Sample ID: Solvation	on Sample			35% para	ffin & 30% lubrica	BICS Sample Ref: 17		
Sample ID: Solvation Test Conditions: Method C	on Sample			35% para	ffin & 30% lubrica 40			
Sample ID: Solvation Test Conditions: Method Conditions	on Sample	relling (35	% diesel,	•			39.75	0.21
Sample ID: Solvation Test Conditions: Method Condit	on Sample C, solvation/sw	relling (35	% diesel,	39	40		39.75 8.24	0.21 0.14
Sample ID: Solvation Test Conditions: Method Condit	on Sample c, solvation/sw 36 39.74	relling (35 37 39.39	% diesel, 38 39.87	39 39.92	40 39.81			
Sample ID: Solvation Test Conditions: Method Condit	on Sample c, solvation/sw 36 39.74 8.44	37 39.39 8.24	% diesel, 38 39.87 8.10	39 39.92 8.30	40 39.81 8.10		8.24	0.14

Unit 2, Little John Mill, Oak Hill Road, Brighouse, West Yorkshire HD6 1SN T +44 (0) 1484 717776 F +44 (0) 1484 717757 E info@bics-labs.co.uk W www.bics-labs.co.uk

TEST RESULTS CONCRETE CANVAS LTD P.O NO: TBA

Contract Ref: N/A Report Ref No: BS-J444/d Material: 13mm Concrete Canvas CC13 Dates Tested: 01/08-01/10/2013

Test Methods: BS EN 14414:2004 - Chemical Resistance &

Concrete Canvas Test Procedure 01 - Bending Strength

Parameter							MEAN	Std De
Sample ID: Control	Sample					BICS Sample Ref: 09		
Test Conditions: None								
Specimen ID	46	47	48	49	50			
Ave. Width mm	40.01	40.27	40.37	39.95	39.87		40.09	0.22
Ave. Thickness mm	13.19	13.18	13.01	13.04	13.36		13.16	0.14
Load at First Crack N	420	356	366	376	349		373	28
Bending Strength MPa	9.05	7.63	8.03	8.30	7.36		8.08	0.66
Sample ID: Solvation Test Conditions: Method Conditions:	•		% diesel,	35% para	ffin & 30% lubri	BICS Sample Ref: 18 cating oil), 50° C for 56 days		
Specimen ID	41	42	43	44	45			
Ave. Width mm	39.72	39.96	39.95	40.00	39.72		39.87	0.14
Ave. Thickness mm	13.00	13.44	13.64	13.55	13.44		13.41	0.25
Load at First Crack N	443	369	360	369	438		396	41
Bending Strength MPa	9.90	7.67	7.27	7.54	9.16		8.31	1.16